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Laboratory measurements of the variance of the power transmission coefficient for
ultrasound in a reverberant elastic body are compared with extant theory and found to
agree. The theory is then extended to describe the transition between behaviors at low and
high modal overlap and to incorporate the effects of decay curvature. The new and more
precise theory is found to agree poorly with measurements. Reasons for the poor agreement
are discussed,; it is concluded that the only viable hypothesis is that mode shape statistics are
not described by real Gaussian random functions.
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1. INTRODUCTION

In a series of papers some years ago Davy [1-3] presented an extensive study of power
variances in reverberation rooms, the chief aim of which was to provide a better
understanding of errors in power estimates for narrow band noise sources. His work
confirmed and modified and extended earlier studies [4, 5] in which it was concluded that
the variance in a reverberation room measurement of steady state power depends strongly
on the modal overlap M = 2nyD, where D is the modal density (modes per unit frequency
dw) and 7 is the dissipation rate (units of nepers per time) of acoustic amplitude. At larger
overlap the relative variance is unity, i.e., the expected fluctuations in the measured power
are comparable to the power itself. This is precisely what one would conclude from a model
in which the transient room response was a Gaussian random process under an exponential
decay envelope.

At weak overlap the variance is much larger. Early theory [4] based on an assumption of
uncorrelated eigenfrequencies suggested it should be 1 + K?/M for all M, with K related to
the statistics of the mode shapes, equal to {u*»/{u?»2, the ratio of the mean fourth power of
a mode amplitude to the square of the mean square. K was commonly taken to be 27/8, as if
the modes had the statistics of the oblique modes in a three-dimensional rectangular room.

A variance larger than unity at small M is easily understood if one recalls that, at small
M, the modes are relatively distinct. In this case the room response varies strongly as the
frequency of excitation coincides, or not, with an eigenfrequency of the room.

Davy [1-3] and Lyon [4] showed that this formula is modified if the eigenfrequencies are
not independent random numbers. They discussed the effects of an assumption called
nearest-neighbor level repulsion and obtained 1 + (K? — 3/2)/M at large M. Weaver [6],
however, pointed out that the nearest-neighbour assumption of Lyon and Davy lacks the
long-range correlations predicted by random matrix theory [7-9]. Retaining the standard
assumption that all modes in a given frequency range have identical modal decay rates 7,
Weaver [6] then showed that the eigenfrequency correlations derived from the Gaussian
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orthogonal ensemble of random matrix theory modifies the formula further. Like other
Weaver obtained 1 + K?/M at small M. But at large M he showed that long-range sepctral
rigidity leads to the expression 1 + (K2 — 3)/M at large modal overlap.

The theory of random matrices predicts the “Gaussian orthogonal ensemble” [8, 9]
form for the eigenfrequency correlations. But questions remain as to the applicability of
that theory. The GOE correlations have been confirmed in measurements in reverberation
rooms [ 10], in microwave cavities [ 11] and in elastic bodies [7, 12, 13]. It is widely believed
that the theory of random matrices applies to such systems if their ray trajectories
are chaotic [ 14, 15]. However, it has been shown [16-19] that chaos per se is not necessary
in order for the GOE eigenfrequency correlations to be obeyed to good accuracy and
great range. One needs only breaking of symmetries and a certain amount of diffuse
scattering.

Random matrix theory further predicts that the eigenmodes are Gaussian random
processes in space. This implies that K should equal 3, a result that also follows if the modes
are written, locally, as random superpositions of real plane waves. The value K = 3 has been
supported by numerous numerical experiments on systems with chaotic ray trajectories
[20, 217 and systems with large amounts of diffuse scattering [22], and is predicted by the
theory of random matrices [8, 9, 23]. The conclusion has been that the relative variance
should be 1 + 9/M atlow M and 1 + 6/M at large M. A prediction for the regime between
these to limits has not yet been made, though it is reasonable to suppose that the transition
is smooth and monotonic.

Understanding power variances in reverberant systems not only has implications for the
accuracy of power measurements in reverberation rooms, but it also has a potential
application to the measurement of modal density. If decay 7y can be measured
independently, and if the relative variance can also be measured, modal density follows from
an expression relating relatively variance to M. Thus, modal density could be measurable
even if the modes have strong overlap.

This is the chief motivation for the present work. It has been suggested that the modal
density is a natural way to ultrasonically characterize heterogeneous media at wavelengths
for which one cannot propagate a coherent wave and so cannot measure wave speed. In the
search for Anderson localization of classical waves, the modal density is a key parameter
[24]. Modal density is also a key parameter for statistical energy analysis [25].

In the next section, we present an experimental study of a small aluminum block, its
diffuse energy decay rate, o, and its power variance. With the known modal density, given
by the standard short-wavelength asymptotic formula, we then compare the observed
variance with the theory discussed above.

In making this comparison we find two significant difficulties. Inasmuch as the decay is
not purely exponential, it is not clear how the decay should be characterized, and in
particular, what value should be assigned to y. After resolving this issue by fitting the decay
to a model with curvature, we extract a value for the mean amplitude decay rate {y). The
theoretical and measured variances are then compared and found to be in reasonable
correspondence, thus motivating a closer scrutiny of the uncertainties in the above theory
for the variance.

For this reason, the subsequent section presents a more complete theory of power
variance than heretofore exists in the literature. Here we calculate the full M dependence of
the relative variance, including the transition between 1 + 9/M and 1 4+ 6/M. We also extend
the theory to the case in which the modes are assumed to have different decay rates, drawn
from a narrow distribution consistent with the model we used for fitting the decay curvature.

The agreement between measured and theoretical variance is found to be worsened. An
extensive discussion of the possible reasons for poor agreement with theory then follows
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and it is reluctantly concluded that the only viable conjecture is that K < 3. This is, the
modes of the sample studied are not real Gaussian random functions of space.

2. MODAL DENSITY, DECAY, AND POWER VARIANCE IN A SAMPLE SYSTEM

2.1. DESCRIPTION OF MEASUREMENT PROCEDURE

We study, as a representative reverberant system, a small aluminum block with nominal
dimensions of 25 x 25 x 37 mm; it is the same block that was called “block A” in an earlier
report [7]. It is illustrated in Figure 1. A single oblique slit made by a band saw serves to
break the three reflection symmetries of the original rectangular block. The slit, of width
1 mm, also provides a source of diffuse scattering; elastic waves will diffract from its tip and
its base. Two thin Valpey-Fisher pin transducers are used as transient wide-band ultrasonic
sources and receivers (diameter 1-5mm each, element diameter 1-0 mm). In order to
minimize absorption, they are applied to the surface without liquid couplant. The source
transducer is excited by a high-voltage pulse for a duration of a few nanoseconds.

The received signal is amplified by 40 dB and captured by a 32 000 word 8-bit waveform
digitizer at a sampling rate of 5 MS/s. The captured waveform is then repetition averaged,
typically 50 times, to improve signal-to-noise ratios. The resulting transient decaying signals
had useful durations between 50 and 70 ms and useful components up to about 1:9 MHz
(where the shear wave length 4,,,. & 1:6 mm). This wave capture was repeated with various
trigger delays in order to access the full record, a record with a length of the order of 300 000
words. Repetition averaging and variable voltage scales resulted in a dynamic range
considerably greater than § bits.

A typical waveform is shown in Figure 1. It appears to be wide-band noise under
a decaying envelope. A more precise description requires time-frequency analysis. As has
been described elsewhere [26] the signal is therefore time-windowed by At (with cosine-bell
edges), Fourier-transformed, squared, and finally integrated over short ranges Af in
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Figure 1. The first several ms of a typical waveform. The signal has the appearance of noise under a decaying
envelope. Block ‘A’ is illustrated in the inset.
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frequency. Typically, At = 205-820 pus and Af = 39 or 78 kHz. The result is the spectral
energy density E(t, f) for a set of time windows and frequency bins. A plot of the logarithm
of E(t, f) versus time is shown, for several different frequencies, in Figure 2. At each
frequency the energy decays in a manner that is approximately exponential. The rate of that
decay, 0 = — dln E/dt, is a measure of the dissipation in the structure.

It is clear from Figure 2 that a straight-line fit would be nearly adequate in one case (at
high frequency) but would fail, to a statistically significant degree, in other cases. The lower
frequencies manifest a decay curvature. Inasmuch as knowing the decay rate is critical for
the present program, it is necessary to come to some understanding of the source of this
curvature, and in particular what value to use for y. At high frequencies it seems evident that
y = ¢/2 is appropriate. At low frequencies the slope — dln E/dt is not constant, so the
identification y = ¢/2 is ambiguous.

One could hypothesize that the curvature is an artefact of the signal processing. If
o depends on frequency (and it does) and if the frequency bins are sufficiently wide, then the
energy in one frequency bin contains components with different frequencies and hence
different decay rates. One consequence would be decay curvature with a sense like that in
Figure 2. The amount of curvature would, though, depend on the frequency bin widths Af.
We have found that changing Af does not (except as noted below) change the curvature. We
are left with a need to find a deeper cause for the curvature. This is an issue that has been
addressed in the recent literature.

2.2. FITS TO CURVED DECAY PROFILES

In a recent series of papers by Burkhardt and co-workers [27, 28], it has been suggested
that the decay curvature is a product of variation amongst modal decay rates, even between
modes at almost the same frequency. Inasmuch as a simple perturbative estimate for the
modal decay rate suggests that the decay rate should depend on the details in the shape of
the associated eigenmode, one expects random fluctuations in these modal decay rates.
Based on a simple model in which dissipation is confined to a modest number, 2n, of
isolated equipotent points in the body, and in which the mode shapes are Gaussian random
processes in space, Burkhardt et al. show that the modal decay rates should be distributed in
accordance with a chi-square distribution of the same order,

p(y) dy oc y" "t exp(—ny/7) dy, (1)

where y = ¢/2 is the average 7.

Such a distribution of modal decay rates leads to an estimate for diffuse energy given by an
incoherent superposition of modes of different y’s. Each mode has an energy decaying
like ~ exp(—2yt), so the superposition has an energy decay given by p(y)’s Laplace transform

E(t) ~ J kp("/) exp(—2y1)dy,  E(t) = Eo(l + at/n) " )

0

As n = oo one recovers conventional exponential decay ~ exp(—at). One may also note
that, for early times t, In E ~ — ot + (at)*> + 2n — (6t)*/3n* + ---,i.e., the decay commences
at the average rate. Burkhardt has suggested [28] that the parameter n, inasmuch as it is
related to the number of a distinct sites at which dissipation is significant, might correlate
with the presence of localized damage.

In any case, the model gives a plausible form for the curvature. Fits of E(t) to form (2)
yield estimates for the average modal width, = ¢/2, and for the curvature parameter n.
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Some of the fits to equation (2) are shown in Figure 2; the recovered values for ¢ and n are
shown in Figure 3.

The quality of the fit to the three-parameter form is remarkable, especially in view of the
simplicity of the model from which it was derived. Chi-squares of the fit were found to be
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Figure 2. (a) The logarithm of the observed spectral energy density at 195 kHz is plotted versus time. The
residual noise level is apparent from the data at negative times. The signal stays well above the noise for 60 ms.
The decay is fit to two different theories. The conventional linear decay (- - - -) is obviously contradicted by the data.
The three-parameter fit to a curved decay (—) fits the data quite well. Fit parameters are as follows. Linear fit:
E, = 6578, ¢ = 0227, chi-square = 23-97; curved fit: E, = 8244, ¢ = 04705, n = 10-96, chi-square = 0-813.
(b) The logarithm of the observed spectral energy density at 508 kHz is plotted versus time. The conventional linear
decay is obviously contradicted by the data. The three-parameter fit to a curved decay fits the data quite well. Fit
parameters are as follows. Linear fit E, = 4:755, ¢ = 0-1713, chi-square = 2:346; curved fit: E; = 5-34, ¢ = 0-2435,
n = 1538, chi-square = 0-851. (c) The logarithm of the observed spectral energy density at 1602 kHz is plotted
versus time. The decay is fit to two different theories. The conventional linear decay and the three-parameter
curved decay both fit the data, though the curved decay model fits better. Fit parameters are as follows. Linear fit
E, = 4-586, ¢ = 02094, chi-square = 2:662; curved fit: E, = 4:948, ¢ = 0-251, n = 347, chi-square = 1-047.
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Figure 3. The fit parameters ¢ (——) and n (----), averaged over fits to several sets of data from different
positions of source and receiver, are plotted versus frequency. The unexpected large absorption at very low
frequencies is attributed to unknown mechanisms in the specimen’s support. At high frequencies where the
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fully acceptable (that is, the data do not contradict the model), whereas the chi-squares of a fit
to the simpler model E, exp(—ot) indicate that the data do contradict that simpler model.
One could also hypothesize an alternative form for the curved decay: E, exp(—oat + ft?)
(which follows from an assumption of a Gaussian distribution of modal decay rates). We
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find that an attempt to fit to the alternative form results in poor chi-squares.
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One could also entertain the hypothesis that the curvature is not directly related to the
dissipation, but rather a consequence of a non-linearity somewhere in the system, either the
elastic waves or the transducers or the amplifier or the digitizer. If, for example, the amplifier
had more gain at low levels than at high levels, the weaker signals at late times would
be enhanced relative to the stronger signals at early times. Curvature like that shown in
Figure 2 would be one consequence. We have examined this hypothesis by varying the
source pulse amplitude (over a range of 25 dB) and found the shapes of the In E versus
t plots to be unchanged. We have also (at low frequencies where modal overlap is small
enough that it is possible) reduced Af sufficiently that only one mode lies in a bin; the
resulting plot then shows no curvature. Thus, individual modes decay without curvature
and the cause of the curvature is not non-linearity.

The picture of curvature as related to variations in modal decay rates is corroborated by
a study, at low frequencies where it is possible to distinguish the modes, of the means and
standard deviations of the widths of the peaks in the Fourier transform of the entire
waveform. The widths have means and variances consistent with the assumed distribution
(2) and with the values for ¢ and n recovered from our fits to the decay of the diffuse signal.

2.3. THEORY FOR MODAL DENSITY

Estimates for M also require estimates for modal density. In bulk elastodynamic bodies the
modal density is describable, for asymptotically high frequency, by a Weyl-like series. The
leading term of this series is proportional to the volume V' of the body and to the square of the
frequency. For an isotropic material the term is simply related to the equivoluminal and
dilatational wave speeds, ¢, and ¢, [29]. It is found by standard mode-counting procedures

(V2n?) [w?/c] + 2w?/c?].

The next term in the asymptotic series is proportional to the surface area S of the body and
was derived for traction-free surfaces by Dupuis et al. [30],

(Soo/8mcd) [2-3(cafce) + 3(ca/ce)*N/[eafe)* — 1]

There is, presumably, a third term in the series, independent of frequency and proportional
to the amount of perimeter L. Our asymptotic estimate for the modal density is then

dN/dw = D(w) = (V2n?)[w?/c; + 2w?/c]
+ (Sw/8me) [2-3(ca/ce) + 3(ca/ce)*T/L(ca/ce)* — 11 + O(LJe).  (3)

In the low modal overlap regime where we can unambiguously count the modes it is
possible to compare this formula with that count. That comparison was made several years
ago [7] and the above formula confirmed as accurate, within a few percent, for frequencies
between 100 and 200 kHz.

2.4. POWER VARIANCES

In addition to the above estimates for D and for o, we require measurements of power
variances. Previous theories [ 1-6], and also the theory to be presented in the next section,
consider variances across an ensemble of equivalent samples. Here we construct our
variances by examining a range of frequencies. There is a kind of ergodicity assumption
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implicit in the comparison. Random matrix theory, however, indicates that modal statistics
are, in this sense, ergodic.

Power variances are constructed by Fourier transforming the complete waveform, like
the one shown in Figure 1, without any time windowing. The absolute value of this Fourier
transform is plotted in Figure 4 over some representative short ranges in frequency. While
each shows a mean value (that is persumably dependent on transducer efficiency as well as
a host of other things) each also shows a substantial fluctuation away from that mean. We
see that the low-frequency case in Figure 4(a) has much greater fluctuations than does the
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Figure 4. (a) The absolute value of the Fourier transform of the signal, in the range around 100 kHz. We note
distinct peaks at the natural frequencies of the specimen and the variance amongst the peak amplitudes. The peaks
are well separated, as the modal overlap at 100 kHz is small. One can also note a variance amongst the peak
widths. (b) The absolute value of the Fourier transform of the signal, in the range around 500 kHz. We note distinct
peaks at the natural frequencies of the specimen and the variance amongst the peak amplitudes. The peaks are not
well separated, as the modal overlap at 500 kHz is significant. (c) The absolute value of the Fourier transform of the
signal, in the range around 1500 kHz. Distinct peaks at the natural frequencies of the specimen are not discernable,
as the modal overlap at 1500 kHz is large.
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intermediate frequency case in Figure 4(b) and the high-frequency case in Figure 4(c). The
fluctuation is quantified by the relative variance, defined by

2 2 S22
reloar = <T =< _ (=R T(0dr "

(T T AP

where T is the square of the Fourier transform. If the range { f; — f>} is short enough, then
the secular variations in the mean, due to the frequency dependence in the tranducer or the
system itself, will not contribute to the calculation of relvar. If it is too short, then equation
(4) will itself fluctuate. If it is much too short, f, — f; «<y/2x, then (T is poorly estimated
and relvar vanishes.

Relvar, after averaging the value obtained from a set of distinct source and receiver
positions, is plotted versus frequency in Figure 5. As expected it drops rapidly with frequency.
Superposed on this plot are the theoretical values 1 + K*/M and 1 + (K* — 3)/M based on
K =3 and M = nDo, where D is taken from equation (3) and ¢ is taken from the
three-parameter fit (2). The agreement is good. The trends are correct and the local
fluctuations in the two theoretical relvars due to fluctuations in ¢ are also seen in the
measured relvar. The measured relvar, as expected, approaches 1 + 9/M at low frequency,
and 1 + 6/M at high frequency.

The quality of the agreement is such that one is driven to ask whether a more exact theory
for relvar can be obtained. In particular, one wishes a theory for relvar that covers the
transition regime between 1 + 9/M at small M and 1 + 6/M at large M. One also wishes
a theory that incorporates variations in modal decay rates. This is the subject of the next
section.

3. POWER VARIANCES IN THE TRANSITION REGIME

3.1. AN IMPROVED THEORY

The modal representation for the response (in the i direction, at position x) of a
lightly damped elastodynamic body to a unit harmonic point force (in the j direction at
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Figure 5. The experimentally determined value for the relative variance is plotted versus frequency (——). The
two simple theories 1 + 9/M and 1 4+ 6/M are also plotted (- - - -) for comparison. It appears that the actual values
lie between the two simple forms, and as expected, approach the latter for large modal overlap.

position y) is

ui (x) uj(y)
Gij(x,y, ) =}, m, ®)

where u” is the rth eigenmode and uj is its ith displacement-vector component. We have
presumed, in equation (5), that the system is diagonally damped, i.e., the damping leaves the
modes real. This is a common assumption. We do not assume that all modes decay at the
same rate y. We seek G’s statistics; in particular we shall calculate the ensemble variance of
|G|?, and compare it with the frequency-domain variance found in the experiments.

We shall make several assumptions. As just discussed, the modes are assumed real. We
also assume that the eigenfrequencies are not independent random numbers, but rather they
have the correlations of the GOE [7-9]. We further assume that the modal decay rates y,
are independently drawn from the narrow distribution (1), with a mean decay rate ¢/2 and
variance related to the curvature parameter n.

As Davy' did [31], we find that equation (5) simplifies if we replace w + w, with 2w,

1y ) ©

20 % 0 —w, — 1y,

r

Gii(x,y, 0)

We drop the unimportant prefactor 1/2w as irrelevant to the calculations of relative
variance. The power transmission function T is the absolute-value square of the response

T Davy notes that equation (6) has problematic absolute convergence, and shares this feature with many of the
other summations; the problem is not eliminated by avoiding the approximation in equation (6). The difficulty is
due to the large number of modes at high index ‘#’, the density of modes increasing (in three dimensions)
quadratically with w,. It is our opinion that the matter can be repaired: the summations can be rendered absolutely
convergent by replacing the modal factors u"(x) with the appropriate overlap integral between the eigenmode and
a smoothly distribute source or receiver function, e.g. v" = ju’(x) S(x) d3x, a quantity which tends rapidly to zero as
r goes to infinity. Interestingly, random matrix theory predicts that v" is Gaussian; K remains three.
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wi(x)ui(y)  ui'(x)uj'(y)

T = - —.
W — W — 1Y, O — Wy — 1Py

rom

)

We now take the average across the ensemble, and recognize that different mode shapes are
uncorrelated with each other, thus eliminating the r # m terms. If x and y are far apart, such
that the modal amplitudes at those two points are uncorrelated,

CLui(x)1? [u(y)]*> = <u?H?

(@ — o, —ip) (@ — o, + i)’

(T = Z

)

where (u?®) is the ensemble average value of the square of an eigenfunction.
We make a further average over the eigenfrequencies by replacing the summation with
a factor D and an integral with respect to w,,

do,

_ 2\ 2 *
<D_D“>Jw@—m—ww—@+m

— Du?y? /ﬁ )

The integrand has been approximated with the form it has near the dominating resonance
at w, = w. Thus D denotes the modal density at the frequency w, thus also the justification
for the earlier approximation w + w, ~ 2w. We have examined the more complicated
equations that result if these approximations had not been made; we find that the error
incurred is small, of order (y/w)*.

For a final average we must average over the range (equation (1)) of values of y

n

awwww<® Dyt (10)

7 n—1

where n is the decay curvature parameter defined in equation (2).
The ensemble variance of T is given in terms of (T?). Again dropping the irrelevant
prefactor 1/2w, we find

wi()ui(y)  u)ufy)  wi)uily)  uf(x)uj(y)

T? = - - - —.
oLk @ T O =19 O — WO — 1)y O — W — 1Y O — O — 1)

(11)

We again invoke the lack of spatial correlations amongst the eigenfunctions and find that
the only terms which survive an average are ther =m = [ =jterms,and ther =m # [ =k
the r =1# m =k, and the r = k # m = [ terms. Re-labelling some of the indices we find

Cui(x)*) uj(y)*y = <u*)?

R Y s s
wy
* 2 rgl CO — Wy — 1%)(@ — W, + Wr) (CU — W — 1)’1)(60 — + 1'}/1)
2\ 4
+3 <) — (12)

r#1 — @y — ryr)z (CO — Wy + 1’Vl)z
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The first of these terms is readily averaged over w,, as previously, by inserting a factor of D,
dropping the summation sign, and integrating over w,. The other terms require an
integration over both w, and w,. As emphasized by Davy [1] and by Weaver [6], it is
important to take account of eigenfrequency correlations. The average of a sum over two
eigenfrequencies in a GOE spectrum is given by two factors of D, one factor of
[1 — Y,{D(w, — w)}] and an integration over all w, and w,. Y, is the Dyson two-level
correlation function [8, 97]. It vanishes at + oo, is an even function of its argument, and
equals unity at zero:

N 42 e do
SRR W=
M [1 — Y,(Dv)] dv da
2D2 2\ 4
2D L Jw G =)@+ )=y — ) — v+ )

+ D) JM fw [1 — Y;(Dv)] dv do

Py 13

It is assumed that the modal decay rates y are uncorrelated with each other and with the
proximity of neighboring eigenfrequencies. Thus, the final average over decay rates can be
carried out independently of the present average over eigenfrequencies. This assumption is
supported by numerical experiments [32].

The integrations over o can be done in closed form:

T

(T =D 35

+ 47ID2<u2>4 '));'f‘ Yt J+m [1 - Yz(DV)] dv

VeVt — o (Vz + (Vr + 'yl)z)
o [1 — Y,(Dv)]dv
- (V - I(Vr + Vl)3) .

Evaluation of this expression demands the performance of the integration with respect to
v, and an average over the values of the y’s.

One simple limit of the above expression is obtained by the approximation Y, (&) ~ 0, i.e.,
in the case that one ignores the eigenfrequency correlations. This has been thought to be
valid in the limit of small overlap: M « 1. In this case, the second of the above integrals over
v vanishes and the first may be done easily:

+ dinD? G2 J (14)

(T?) = D<u*)? D?(u)*. (15)

T n 2n?
2 v
On averaging over the ), this becomes

3

n 27‘62 n R rea
(n—l)(n—z)(n_3)+772 WD uH" (16)

2

i
<T2> = D<u4>2 273
The relative variance is

(T LTy w1 an—1)
relvar = T 1+ QP M (=2 —3) (17)
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where n is the curvature parameter and M has been defined using the average v:
M =2nDy = nDo.

If we do not neglect Y, then the above expression for relvar is augmented by terms related
to Ys:

W 1 o —1) WE N, | (= 1)
lvar = 1 — —4 I, +il
reloar =1 0 mE M = =3 | ey DT T
where
! :lfﬂo Y,(Dv) dv :Jﬂo Y,(Dv) dv a8)
2 0Pt s =i+ )Y

where the overbar indicates an average over the y. These integrals over v are done most
easily by taking advantage of the relatively simple form Y, takes when Fourier transformed
[91:

+

blg) = T»(2nq) sf Y, (&) expli2nge) de.

— o0

1 [+ .
T =y [ epl-ita}bia/2m da (19
g |12 a2 <
9= 2|q| + 1
—1+|q/In , lg| > 1.
g1

By invoking Parceval’s theorem, that the integral of the product of two functions is related
to the integral of the product of their Fourier transforms,

|" rosoda-o [ foaa (20)

we find that I; and I, become

1 (7% b(g/2m) exp{—Dlql(y, + 1)}
1= d 5
! 4 Jvoo (yn + Vl) 1
I, =—i/2 f D?q*b(q/2m) exp{—Dlql(y, + 1)} dg. (21)

The quantity

Ve +9 .
0= [’ L 112} (22)
”/er

then becomes

— 00 — 00

1 [ TovnS _ Dlalol 12 1ro
0 =3[ paam | FPERI gy 1 gt Tenp (DI T dg
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0

0 1 B .
e | b ptanr a3 [ banp e+ Dl ag

— o0

J” b(g/2n) dgq 1 Jw b(q/2m)D*q* dq
*/Z(n — 12 Jo (L+Dgy/m*™ 2" 2, (1+Dgy/n™

© b(t) dt 2nM? [ bt dt 3
(n — 1)2 J (1 + Mt/n)> 2" 2357 L (1 + Mt/n)*" 3)
So
B ! nn — 1) f(M, n)
relvar =1 + W M n—2n—3 M (24)
where
B ® b(r) dt , (n—=12% (>  b()e* de
f(M,n) = 4M UO (1 + Mt/n)*" 2 M L (1+ Mt/n)z"j|
o neant 0] 29

The integrals I3 and I, can be evaluated exactly, for arbitrary M and n, in terms of products
of hypergeometric functions and the Beta-function. The results are not simple however, and
certain limiting cases are more instructive.

For small M, it may be seen that f— 4M [b(r) dt = 2M and relvar approaches a simple
limiting expression

relvar = m KMZ —1+0M), M<«I. (26)

At modest levels of decay curvature, for example at n = 10, this is about —1 +14.5/M,
which may be compared with the conventional prediction case: 1 + 9/M. It is clear that
decay curvature has a significant impact on the theoretical prediction for relvar. It is also
apparent that the earlier estimate for the low M limit (1 + 9/M) is valid only at order 1/M,
not at order unity.

For large M the integrals I; and I, are, to leading order, (n/M)/(2n — 3) and
(2n/M)3/(2n — 3)(n — 1)(2n — 1) respectively. Thus relvar is

~ 1 nin — 1) 4n(3n — 2)
relvar =1 + — |:K2 m—2n—3 (2n—3)2n—1)

1/M), M>1. 27
- } + of1/M) @7
In agreement with previous results [6], this becomes 1 + (K? — 3)/M in the limit of no
curvature, n = oo.

The case of weak curvature, n large but not infinite, at arbitrary M, is also relevant. In this
case we can expand in powers of p = 1/n for arbitrary M:

of

r=0

= 4MJ b(t)[1 + M?t*]e”*M'dt + p4Mf b(t)ye " *M[2Mt — M?*t* + 5 M*t*] dt.

0 0
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Figure 6. The function f (M, n = o0). An analytic expression for f'is given in equation (30). On the inset f(M) for
finite n (-- - -) as calculated using the approximation b(t) = exp(—2|t|) is also shown; it is barely distinguishable
from the exact f(M, o). The difference between them, f,,proximate — fexaer» P€2ks at about 0-0419 at M = 1-3.

Each of these integrations may be evaluated in terms of the usual exponential function E;
defined by

El(z)zr Wdz, 20, (29)

The first term is the simpler; at n = co and all M, fis given by

(M) = 4M rb(z)[l + M?¥]e 2M 4y

M 5 M 1 5
— = 2_7 —2M (" - -
<4+ 4M>—|—e <4+2+4M>

M> 3M 5 5 M> 3M 5 5
CEMye M2 2 2 2 ) peM( e 2 2 )
1(M)e <4+4+2+2M> i )e<4+4+2+2M> (30)

which is confirmed by numerical evaluations of the integral. f(M, n = o) is plotted in
Figure 6. As expected, it smoothly and monotonically varies from 0 to 3.

A useful approximate closed-form expression for f(M,n) for arbitrary M and n is
provided by substituting a form for b(t) that makes the integrals (25) tractable. We have
found that b(t) ~ exp(—2[t|) is a pretty good approximation; exp(— 2|t|) correctly describes
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Figure 7. The exact b(t) (solid line, given in equation (19)), is compared with the approximation exp(—2|t|)

()

the total integral of b(t), its value at t = 0, and also its slope at t = 0. Figure 7 provides
a more detailed comparison. The inset to Figure 6 compares f(M,n = c0) as obtained
exactly, and as obtained using this approximation for b(t). The difference is small.

After making the substitution b(t) ~ exp(—2|t|), the integrals I5 and I, may be performed
for arbitrary n in terms of the generalized exponential functions Ej(z) = [t~/ exp{—z1) dt:

I5 = 5 exp {20/ M} s, > (2n/M),

3

I = 5 xp{20/M} [E2,(2n/M) = 2E2, -1 2n/M) + Ezy>2n/M)]. - (31)

To summarize, the relative power variance for a system with GOE eigenfrequency
statistics Y,, and chi-square width statistics (1), is given exactly by equation (24). The
function f (M, n) is defined by equation (25). In the limit of no decay curvature (n = w0), f'is
given by the simple expression (30). In the limit of small M, but arbitrary decay curvature,
the relative variance is given exactly by equation (26). For all M and n, f is given
approximately by equation (25) and (31). Figure 8 plots f(M, n) versus M for various
relevant values of n, and also plots the approximate expressions (25) and (31). It is seen that
the approximate expression is reasonably accurate over the full range examined.

3.2. COMPARISON WITH MEASURED POWER VARIANCES

In Figure 9 we plot the observed relative variance versus frequency, and also plot the
theoretical value (24) where M = nDo and n and ¢ are taken from fits of the observed diffuse
field decay to formula (2), and D is taken from equation (3). The correspondence is less close
than it was in Figure 5. The data support the theory is certain ways, and show the predicted
transition between low M and high M behavior, but nevertheless the data lie consistently
below theoretical predictions. Consideration of decay curvature has in fact led to less
agreement between theory and measurement.
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Figure 8. The function f(M, n) is plotted (——) versus M at n = 5. Its approximate version (----) based on the
substitution b(t) = exp(—2|t|) is also plotted. The difference is small.
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Figure 9. The experimentally determined relvar (——) is compared with the new and more precise theory (-- - -)
that incorporates decay curvature and a precise analysis of the transition between low and high modal overlap
limits. The correspondence with the measurement is now poor. The isolated dots indicate the predictions of the
earlier theory (Figure 5).
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3.3. DISCUSSION

We have examined several hypotheses in an attempt to understand the lack of accord
between theory and measurements. They are (1) temperature variations during the tests,
(2) correlations between y and u, (3) correlations between source and receiver positions
x and y, (4) error in the theory where the integrand was approximated by its form in the
vicinity of the dominating reasonances, (5) that our estimates for D are in error, and (6) that
the modal amplitude statistics are non-Gaussian; K # 3.

Temperature variations during a test can lead, by means of the temperature sensitivity of
the resonant frequencies, to artificially augmented resonance widths, widths that are
unrelated to decay. Thus, the measured relative variances would be less than they ought to
be. This is indeed an effect, but it was found to be small. We learned to control it by
conducting tests in a container that minimized air drafts and by monitoring the sample
temperature.

If y,, is correlated with u,,(x) or u,(y), our theory would be in error. Such correlation
could follow if the source or detector contributed significant amounts of dissipation,
because the modes which the tranducers are most sensitive to have extra dissipation.
Our test were normally conducted using “dry-coupled” transducers. However, when we
did add a small drop of oil or water to the transducer/sample contact, we found that the
signal was much stronger, the decay was faster, and the decay had more curvature. All
these effects are consistent with a hypothesis of dissipative processes taking place at
the liquid drop. The effect on relvar was strong — the measured relvar values were even
less in agreement with theory than they had been. A drop of oil placed at a point away from
source or receiver contributed less to the decay and had essentially no effect on the
agreement or lack thereof between theory and measured relvars. Thus y-u correlations
can be attributed to the wet-contact transducers. The question remains as to whether
the dry-coupled tranducers also have such correlations. We answer that in the negative
by a simple test in which a third (also dry-coupled) dummy transducer is placed on
the sample. This was found to make no measurable difference in the system o. Thus,
there is no dissipation associated with our dry coupling, and y-u correlations are not
present.

The theory also assumed that the source and receiver are sufficiently distant so that there
are no correlations between u,(x) and u,(y); i.e., <u,(X)u.(y)> = 0. In actually, source and
receiver were typically separated by distances of the order of 15 mm. It is well established
that such correlations do exist, but that they decay on a length scale of the order of
a wavelength. Numerical simulations in 2-D corroborate the usual prediction that the u’s
are Gaussian and have correlations given by

Cu () u(y)y = <u?> (1 + Jo(k[x = y))). (32)

If we apply this to our system and take the modes to have their correlations on the surface
dominated by those of the Rayleigh surface waves, we find that the predictions for relvar
should be greater by about 10% for source and receiver at a distance of two Rayleigh
wavelengths. (This is surely an overestimate, as only part of the surface disturbance is
Rayleigh waves). We conclude that the effect is weak, especially for frequencies above
400 kHz, but that in any case it has the wrong sign; it lead to worse agreement between
theory and measurement.

The power transmission function T(w) is clearly dominated by the contribution of the
modes m that have frequencies w,, close to w. Nevertheless, the distant modes do contribute
[31], and the theory presented above has approximated their contribution. We have
re-examined the theory without making the approximation and found that the error
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incurred by the approximation is indeed small compared to the large discrepancy we have
between theory and measurement.

The value of D used in constructing M was based on an asymptotic Weyl formula that is
not exact. Any error there must, however, be quite small. The Weyl formula has been checked
in detail over the regime from 100 to 200 kHz where individual peaks were distinct enough to
allow it, and errors were found to be far smaller than the discrepancies we seek to explain.

It may be noted that the theory for relvar entails a ratio of the ensemble average of the
square of T to the square of its ensemble average. The quantities plotted here are, however,
spatial averages of the ratio of short-frequency-range averages. These are not precisely
equivalent. The spatial average is not a problem, as it only smooths out fluctuations in relvar.
The frequency average is, as argued here and elsewhere, equivalent to an ensemble average.
The average of a ratio is not, though, the same as the ratio of the averages. A closer scrutiny of
the approximation reveals that it artificially decreases the effective value of K2. Indeed, if there
were only one peak in the range { f; — f5} the effective K* would be 1. The effective K* may be
calculated by a simple Monte-Carlo construction of the ratio of the average of the fourth
powers of a finite number N of random numbers r, to the square of the average of the squares
of those numbers r, where each random number r is itself the product of two Gaussian
random numbers. The effective K? rapidly approaches 9 as the number of peaks N in the
range {f; —f>} increases. At 100 kHz, the number of peaks in the range is about N = 45,
where the effective K? is about 6-5. At 200 kHz, there are about N = 128 peaks in the range,
and (K?)fsective 18 79. At 300 and 400 kHz these quantities are 248 (8-3) and 406 (8-5)
respectively. Thus, the difference between the ratio of the averages and the average of the
ratios is not enough to explain the discrepancy between the theory and measurements.

We are left with one hypothesis: that the mode shapes are not Gaussian; that, as Davy
suggested phenomenologically in order to make his theory conform to his measurements
[2], K* < 9. Militating against this hypothesis is the excellent agreement between the
spectral correlations of block A and those of the GOE [7]. It would be peculiar if the GOE
predictions for spectral correlations were so well followed, while the modal amplitude
statistics are not. Also militating against the hypothesis is the central limit theorem and
a vague notion that Gaussian statistics are virtually ubiquitous. These arguments are of
course not compelling. In support of the hypothesis we offer three pieces of evidence.

In the regime between 100 and 200 kHz where the peaks are well separated, and width
and amplitude values can be measured directly from the spectra, we found that the average
and standard deviation of the peak widths agreed with the 7 statistics assumed in equation
(2). The same data were also used to extract values for, and statistics on, |u,(x)u,(y)|>. We
found (| u,(X) u, (y)|*>/< |t (X) ,(y)|*>* & 7. This is less than 9, but not sufficient to explain
the discrepancies we wish to explain. The value ~ 7 is, though, in agreement with the
predicted value of (K?),//ecive discussed above. Difficulties recur, then, after one realizes that
the distance between x and y is comparable to a wavelength at these frequencies and K2
should be larger than 9 here.

When the source and receiver are placed on the corners of the sample the signal is much
greater. This is not unexpected: modal amplitudes are higher near traction-free surfaces.
The measured values of relvar are, however, less than they are when the source and receiver
are in the interior. The decay and frequency correlation statistics are of course the same in
the corners, only the amplitude statistics can differ.

If the modal amplitude statistics are not in accord with random matrix theory (RMT),
then it may be that diffuse scattering mechanisms in the sample are not sufficiently strong.
The conventional understanding, the “Bohigas Conjecture” [14, 15], asserts that a system
with chaotic ray trajectories will be in accordance with RMT, except on the longest
frequency scales — those comparable to the inverse of the period of the shorter periodic
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orbits. This has been widely confirmed in numerical studies of two-dimensional scalar
systems [20-22]. Laboratory confirmations are mostly confined to confirmation of
predictions of eigenfrequency correlations [7, 12, 13]. Nevertheless, there are some
laboratory studies of the Gaussian nature of the amplitude statistics [ 11]. We can treat this
as well established.

Block A, used in the above study, does not have conventional chaotic ray trajectories.
Bohigas et al. remarked that the system is not of the usual class [ 16]. Nevertheless, there is
reason to think it ought to have sufficient diffuse scattering mechanisms. Its level statistics
suggest that this is the case. Furthermore, the edges of the slit and the corners of the block
do generate diffuse scattering. As discussed in references [17, 18] even a point scatterer is
somewhat effective. As discussed by many, pseudo-integrable systems without chaotic ray
trajectories often have good GOE level statistics. The extend to which Block A is integrable
would in any case tend to increase the theoretical prediction for relvar.

Even if such systems do have good GOE level statistics, it is not clear that this implies
that they ought to have GOE amplitude statistics. To explore this possibility we have also
measured relvar for some other elastic bodies. Block “B” from the previous study has two
slits cut into it and presumably has more diffuse scattering. Block “X” with several slits was
also constructed, and also Block “D” with defocusing surfaces, both with sizes comparable
to those of B and A (23 cm?). A large block (“E”) was also constructed, with diffusing
surfaces, and volume ~2200 cm®. The decay curvature for this specimen was much less,
with values of n > 30 over all frequencies investigate. For all these specimens we found that
the theory and measurement for relvar remained in poor accord. The conclusion is that the
above theory is still inaccurate. The poor accordance with theory remains unexplained.

4. CONCLUSIONS

The theory presented here is arguably much more realistic than that employed by Lyon
[4] and Davy [1-3]; we have included the proper GOE eigenfrequency correlations; we
have replaced the assumption K = 27/8 with a more reasonable value K = 3; we have
incorporated modal width variations. Nevertheless, just as observed by Davy in acoustic
reverberation rooms [1], the predicted variances exceed the measured variances. It is
outside the scope of this paper to pursue this matter further, but we do conclude with
a speculation.

The theory presented here, as well as that of Lyon and Davy, assumed that the modes
were real, uncoupled by the dissipation. It is extraordinarily unlikely that the dissipation is
simultaneously diagonalizable with the rest of the dynamics. In other words, the actual
modes must be complex. The appropriate definition of K would then be {Ju(x)*>/{[u(x)|*>>.
If the real and imaginary parts of u are independent Gaussian random numbers, this
quantity lies between 2 and 3, depending on the relative strengths of the real and imaginary
parts. At high modal overlap one would imagine that the real and imaginary parts would be
of equal strength, and K would be 2. At low modal overlap where the modes are presumably
mostly real, K would be closer to 3. The effect moves theory closer to measurement; it
remains for more detailed calculations to explore the speculation further.
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